|
|
2 éve | |
|---|---|---|
| .github | 2 éve | |
| Dockerfile | 2 éve | |
| LICENSE | 2 éve | |
| README.md | 2 éve | |
| entrypoint.sh | 2 éve | |
| selkies-gstreamer-entrypoint.sh | 2 éve | |
| supervisord.conf | 2 éve | |
| xgl.yml | 2 éve |
KDE Plasma Desktop container designed for Kubernetes supporting OpenGL GLX and Vulkan for NVIDIA GPUs with WebRTC and HTML5, providing an open source remote cloud graphics or game streaming platform. Spawns its own fully isolated X Server instead of using the host X server, not requiring /tmp/.X11-unix host sockets or host configuration.
Use docker-nvidia-egl-desktop for a KDE Plasma Desktop container which directly accesses NVIDIA (and unofficially Intel and AMD) GPUs without using an X11 Server, supports sharing a GPU with many containers, and automatically falling back to software acceleration in the absence of GPUs (but with limited graphics performance).
Read the Troubleshooting section first before raising an issue. Support is also available with the Selkies Discord. Please redirect issues or discussions regarding the selkies-gstreamer WebRTC HTML5 interface to the project.
Container startup could take some time at first launch as it automatically installs NVIDIA drivers compatible with the host.
Wine, Winetricks, Lutris, and PlayOnLinux are bundled by default. Comment out the section where it is installed within Dockerfile if the user wants to remove them from the container.
There are two web interfaces that can be chosen in this container, the first being the default selkies-gstreamer WebRTC HTML5 interface (requires a TURN server or host networking), and the second being the fallback noVNC WebSocket HTML5 interface. While the noVNC interface does not support audio forwarding and remote cursors for gaming, it can be useful for troubleshooting the selkies-gstreamer WebRTC interface or using this container with low bandwidth environments.
The noVNC interface can be enabled by setting NOVNC_ENABLE to true. When using the noVNC interface, all environment variables related to the selkies-gstreamer WebRTC interface are ignored, with the exception of BASIC_AUTH_PASSWORD. As with the selkies-gstreamer WebRTC interface, the noVNC interface password will be set to BASIC_AUTH_PASSWORD, and uses PASSWD by default if not set. The noVNC interface also additionally accepts the NOVNC_VIEWPASS environment variable, where a view only password with only the ability to observe the desktop without controlling can also be set.
The container requires host NVIDIA GPU driver versions of at least 450.80.02 and preferably 470.42.01, with the NVIDIA Container Toolkit to be also configured on the host for allocating GPUs. All Maxwell or later generation GPUs in the consumer, professional, or datacenter lineups will not have significant issues running this container, although the selkies-gstreamer high performance NVENC backend may not be available (see the next paragraph). Kepler GPUs are untested and likely does not support the NVENC backend, but can be mostly functional using fallback software acceleration.
The high performance NVENC backend for the selkies-gstreamer WebRTC interface is only supported in GPUs listed as supporting H.264 (AVCHD) under the NVENC - Encoding section of NVIDIA's Video Encode and Decode GPU Support Matrix. If your GPU is not listed as supporting H.264 (AVCHD), add the environment variable WEBRTC_ENCODER with the value x264enc, vp8enc, or vp9enc in your container configuration for falling back to software acceleration, which also has a very good performance depending on your CPU.
The username is user in both the container user account and the web authentication prompt. The environment variable PASSWD is the password of the container user account, and BASIC_AUTH_PASSWORD is the password for the HTML5 interface authentication prompt. If ENABLE_BASIC_AUTH is set to true for selkies-gstreamer (not required for noVNC) but BASIC_AUTH_PASSWORD is unspecified, the HTML5 interface password will default to PASSWD.
NOTES: Only one web browser can be connected at a time with the selkies-gstreamer WebRTC interface. If the signaling connection works, but the WebRTC connection fails, read the Using a TURN Server section.
Run the container with Docker (or other similar container CLIs like Podman):
docker run --gpus 1 -it --tmpfs /dev/shm:rw -e TZ=UTC -e SIZEW=1920 -e SIZEH=1080 -e REFRESH=60 -e DPI=96 -e CDEPTH=24 -e VIDEO_PORT=DFP -e PASSWD=mypasswd -e WEBRTC_ENCODER=nvh264enc -e BASIC_AUTH_PASSWORD=mypasswd -p 8080:8080 ghcr.io/selkies-project/nvidia-glx-desktop:latest
NOTES: The container tags available are
latestand22.04for Ubuntu 22.04,20.04for Ubuntu 20.04, and18.04for Ubuntu 18.04. Replace all instances ofmypasswdwith your desired password.BASIC_AUTH_PASSWORDwill default toPASSWDif unspecified. The container must not be run in privileged mode.
Change WEBRTC_ENCODER to x264enc, vp8enc, or vp9enc when using the selkies-gstreamer interface if your GPU does not support H.264 (AVCHD) under the NVENC - Encoding section in NVIDIA's Video Encode and Decode GPU Support Matrix.
Connect to the web server with a browser on port 8080. You may also separately configure a reverse proxy to this port for external connectivity.
NOTES: Additional configurations and environment variables for the selkies-gstreamer WebRTC HTML5 interface are listed in lines that start with
parser.add_argumentwithin the selkies-gstreamer main script.
(Not Applicable for noVNC) Read carefully if the selkies-gstreamer WebRTC HTML5 interface does not connect. Choose whether to use host networking or a TURN server. The selkies-gstreamer WebRTC HTML5 interface will likely just start working if you add --network host to the above docker run command. However, this may be restricted or be undesired because of security reasons. If so, check if the container starts working after omitting --network host. If it does not work, you need a TURN server. Read the Using a TURN Server section and add the environment variables -e TURN_HOST=, -e TURN_PORT=, and pick one of -e TURN_SHARED_SECRET= or both -e TURN_USERNAME= and -e TURN_PASSWORD= environment variables to the docker run command based on your authentication method.
Create the Kubernetes Secret with your authentication password:
kubectl create secret generic my-pass --from-literal=my-pass=YOUR_PASSWORD
NOTES: Replace
YOUR_PASSWORDwith your desired password, and change the namemy-passto your preferred name of the Kubernetes secret with thexgl.ymlfile changed accordingly as well. It is possible to skip the first step and directly provide the password withvalue:inxgl.yml, but this exposes the password in plain text.
Create the pod after editing the xgl.yml file to your needs, explanations are available in the file:
kubectl create -f xgl.yml
NOTES: The container tags available are
latestand22.04for Ubuntu 22.04,20.04for Ubuntu 20.04, and18.04for Ubuntu 18.04.BASIC_AUTH_PASSWORDwill default toPASSWDif unspecified.
Change WEBRTC_ENCODER to x264enc, vp8enc, or vp9enc when using the selkies-gstreamer WebRTC interface if your GPU does not support H.264 (AVCHD) under the NVENC - Encoding section in NVIDIA's Video Encode and Decode GPU Support Matrix.
Connect to the web server spawned at port 8080. You may configure the ingress endpoint or reverse proxy that your Kubernetes cluster provides to this port for external connectivity.
NOTES: Additional configurations and environment variables for the selkies-gstreamer WebRTC HTML5 interface are listed in lines that start with
parser.add_argumentwithin the selkies-gstreamer main script.
(Not Applicable for noVNC) Read carefully if the selkies-gstreamer WebRTC HTML5 interface does not connect. Choose whether to use host networking or a TURN server. The selkies-gstreamer WebRTC HTML5 interface will likely just start working if you uncomment hostNetwork: true in xgl.yml. However, this may be restricted or be undesired because of security reasons. If so, check if the container starts working after commenting out hostNetwork: true. If it does not work, you need a TURN server. Read the Using a TURN Server section and fill in the environment variables TURN_HOST and TURN_PORT, then pick one of TURN_SHARED_SECRET or both TURN_USERNAME and TURN_PASSWORD environment variables based on your authentication method.
Note that this section is only required for the selkies-gstreamer WebRTC HTML5 interface. For an easy fix to when the signaling connection works, but the WebRTC connection fails, add the option --network host to your Docker command, or uncomment hostNetwork: true in your xgl.yml file when using Kubernetes (note that your cluster may have not allowed this, resulting in an error). This exposes your container to the host network, which disables network isolation. If this does not fix the connection issue (normally when the host is behind another firewall) or you cannot use this fix for security or technical reasons, read the below text.
In most cases when either of your server or client has a permissive firewall, the default Google STUN server configuration will work without additional configuration. However, when connecting from networks that cannot be traversed with STUN, a TURN server is required.
Read the instructions from selkies-gstreamer if want to deploy a TURN server or use a public TURN server instance.
With Docker (or Podman), use the -e option to add the TURN_HOST, TURN_PORT environment variables. This is the hostname or IP and the port of the TURN server (3478 in most cases).
You may set TURN_PROTOCOL to tcp if you are only able to open TCP ports for the coTURN container to the internet, or if the UDP protocol is blocked or throttled in your client network. You may also set TURN_TLS to true with the -e option if TURN over TLS/DTLS was properly configured.
You also require to provide either just TURN_SHARED_SECRET for time-limited shared secret TURN authentication, or both TURN_USERNAME and TURN_PASSWORD for legacy long-term TURN authentication, depending on your TURN server configuration. Provide just one of these authentication methods, not both.
Your TURN server will use only one out of two ways to authenticate the client, so only provide one type of authentication method. The time-limited shared secret TURN authentication requires to only provide the Base64 encoded TURN_SHARED_SECRET. The legacy long-term TURN authentication requires to provide both TURN_USERNAME and TURN_PASSWORD credentials.
Create a secret containing the TURN shared secret:
kubectl create secret generic turn-shared-secret --from-literal=turn-shared-secret=MY_TURN_SHARED_SECRET
NOTES: Replace
MY_TURN_SHARED_SECRETwith the shared secret of the TURN server, then changing the nameturn-shared-secretto your preferred name of the Kubernetes secret, with thexgl.ymlfile also being changed accordingly.
Uncomment the lines in the xgl.yml file related to TURN server usage, updating the TURN_HOST and TURN_PORT environment variable as needed:
- name: TURN_HOST
value: "turn.example.com"
- name: TURN_PORT
value: "3478"
- name: TURN_SHARED_SECRET
valueFrom:
secretKeyRef:
name: turn-shared-secret
key: turn-shared-secret
- name: TURN_PROTOCOL
value: "udp"
- name: TURN_TLS
value: "false"
NOTES: It is possible to skip the first step and directly provide the shared secret with
value:, but this exposes the shared secret in plain text. SetTURN_PROTOCOLtotcpif you were able to only open TCP ports while creating your own coTURN Deployment/DaemonSet, or if your client network throttles or blocks the UDP protocol.
Create a secret containing the TURN password:
kubectl create secret generic turn-password --from-literal=turn-password=MY_TURN_PASSWORD
NOTES: Replace
MY_TURN_PASSWORDwith the password of the TURN server, then changing the nameturn-passwordto your preferred name of the Kubernetes secret, with thexgl.ymlfile also being changed accordingly.
Uncomment the lines in the xgl.yml file related to TURN server usage, updating the TURN_HOST, TURN_PORT, and TURN_USERNAME environment variable as needed:
- name: TURN_HOST
value: "turn.example.com"
- name: TURN_PORT
value: "3478"
- name: TURN_USERNAME
value: "username"
- name: TURN_PASSWORD
valueFrom:
secretKeyRef:
name: turn-password
key: turn-password
- name: TURN_PROTOCOL
value: "udp"
- name: TURN_TLS
value: "false"
NOTES: It is possible to skip the first step and directly provide the TURN password with
value:, but this exposes the TURN password in plain text. SetTURN_PROTOCOLtotcpif you were able to only open TCP ports while creating your own coTURN Deployment/DaemonSet, or if your client network throttles or blocks the UDP protocol.
docker-nvidia-egl-desktop: It's generally recommended to use docker-nvidia-glx-desktop when possible for maximum capabilities and performance. It starts its own X server inside the container without exposure to security risks. However, docker-nvidia-egl-desktop is versatile in various environments and has less processes running, meaning less possible complications in restricted environments. It is also possible to be used in HPC clusters with Apptainer/Singularity available, and sharing a GPU with multiple containers is also possible. Unofficial support for Intel and AMD GPUs is also available.
Sunshine: This repository is an open-source server for NVIDIA's GameStream protocol, supporting all clients that can install Moonlight. Try it if you don't need username/password authentication and you don't need to use containers. Games on Whales is a container implementation of Sunshine. However, many container ports have to be accessible to the internet, and because of its requirement for the /dev/uinput device, unsafe privileged access for containers are required. The selkies-gstreamer project, which is integrated to our container, does not require more than one port open from the container (TURN server may be required but can be deployed in a different environment with flexibility), and has almost equal performance while using only a web browser as a client.
x11docker: This has a lot of features and is very solid if you are the sole user in full control of the host. However, it starts a lot of processes in the host and is nearly impossible to contain the environment. Kubernetes is also not supported. The docker-nvidia-glx-desktop repository contains everything in the container, with the only requirement being the NVIDIA Container Toolkit with adequate NVIDIA_DRIVER_CAPABILITIES, meaning that the container is portable anywhere Docker/Podman or Kubernetes can be run.
Xpra: This is a feature-complete all-in-one remote desktop application optimized for Linux, although not exactly meant for full screen workloads and its HTML5 web interface is not optimized for intensive graphics workloads. Supports various protocols and various hardware acceleration methods.
KasmVNC: This almost landed as a replacement for the existing noVNC fallback installation, as it incorporates improved functionalities. However, performance compared to x11vnc combined with noVNC was not much better.
Parsec: Parsec is not open-source. However, it brings top-level performance on Windows or Mac hosts. Try it if you don't need to use containers. But the selkies-gstreamer project uses the same APIs and isn't that far back in terms of performance.
CloudRetro and CloudMorph: This uses WebRTC in a web browser, like the selkies-gstreamer project. The principles of this project are pretty similar to our project. However, hardware acceleration across various GPUs is currently not implemented. Hardware acceleration is critical to remote desktop and workload performance, and therefore you should use our repository if you need hardware acceleration.
neko: Uses WebRTC in a web browser with a text chat, and it is also designed for containers (uses GStreamer too), but I had a hard time in conditions where more than one port can't be exposed or when using reverse proxies. Use this if you want good performance while requiring multiple users to be able to access the screen. However, note that you can always use conference software such as Zoom, Jitsi, or BigBlueButton to share your screen while using our container.
RustDesk: This is an open-source TeamViewer or AnyDesk. You can use this to have other people control your node if you need to.
Weylus: This is a very interesting project, and has many technologies in common. Use this if you want to turn your tablet or smartphone to a graphic tablet for your PC.
GamingAnywhere: This is the father of all open-source remote desktop and game streaming protocols. However, it has been created a long time ago and thus reached its end of life.
Check that the NVIDIA Container Toolkit is properly configured in the host. After that, check the environment variable NVIDIA_DRIVER_CAPABILITIES after starting a shell interface inside the container.
NVIDIA_DRIVER_CAPABILITIES should be set to all, or include a comma-separated list of compute (requirement for CUDA and OpenCL, or for the selkies-gstreamer WebRTC remote desktop interface), utility (requirement for nvidia-smi and NVML), graphics (requirement for OpenGL and part of the requirement for Vulkan), video (required for encoding or decoding videos using NVIDIA GPUs, or for the selkies-gstreamer WebRTC remote desktop interface), display (the other requirement for Vulkan), and optionally compat32 if you use Wine or 32-bit graphics applications.
If you checked everything here, scroll down.
Note that because of restrictions from Xorg, it is not possible to share one GPU to multiple Xorg servers running in different containers. Use docker-nvidia-egl-desktop if you intend to do this.
--privileged mode or with --cap-add and do not want other containers to interfere.Make sure that the NVIDIA_DRIVER_CAPABILITIES environment variable is set to all, or includes both graphics and display. The display capability is especially crucial to Vulkan, but the container does start without noticeable issues other than Vulkan without display, despite its name.
If your GPU is a consumer or professional GPU, change the VIDEO_PORT environment variable from DFP to DP-0 if DP-0 is empty, or any empty DP-* port. Set VIDEO_PORT to where your monitor is connected if you want to show the remote desktop in a real monitor. If your GPU is a Datacenter (Tesla) GPU, keep the VIDEO_PORT environment variable to DFP, and your maximum resolution is at 2560 x 1600. To go above this restriction, you may set VIDEO_PORT to none, but you must use borderless window instead of fullscreen, and this may lead to quite a lot of applications not starting, showing errors related to XRANDR or RANDR.
systemd, polkit, FUSE mounts, or sandboxed (containerized) application distribution systems like Flatpak, Snapcraft (snap), AppImage, and etc.Use the option --appimage-extract-and-run or --appimage-extract with your AppImage to run them in a container. Alternatively, set export APPIMAGE_EXTRACT_AND_RUN=1 to your current shell. Use sudoedit to edit protected files in the desktop instead of using sudo followed by the name of the editor.
This project involved a collaboration effort with members of the Selkies Project, incorporating the selkies-gstreamer WebRTC remote desktop streaming application. Commercial support for this container is available with itopia Spaces.
This work was supported in part by National Science Foundation (NSF) awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-1826967, OAC-2112167, CNS-2100237, CNS-2120019, the University of California Office of the President, and the University of California San Diego's California Institute for Telecommunications and Information Technology/Qualcomm Institute. Thanks to CENIC for the 100Gbps networks.