KDE Plasma Desktop container designed for Kubernetes, supporting OpenGL EGL and GLX, Vulkan, and Wine/Proton for NVIDIA GPUs through WebRTC and HTML5, providing an open-source remote cloud/HPC graphics or game streaming platform. Spawns its own fully isolated X.Org X11 Server instead of using the host X Server, not requiring /tmp/.X11-unix host sockets or host configuration.
Use docker-nvidia-egl-desktop for a KDE Plasma Desktop container which directly accesses NVIDIA (and unofficially Intel and AMD) GPUs without using an X.Org X11 Server, supports sharing one GPU with many containers, and automatically falling back to software acceleration in the absence of GPUs (but with lower graphics performance).
Please read Troubleshooting first, then use Discord or GitHub Discussions for support questions. Please only use Issues for technical inquiries or bug reports.
Container startup may take some time at first launch as it could automatically install NVIDIA driver libraries compatible with the host.
For Windows applications or games, Wine, Winetricks, Lutris, Heroic Launcher, PlayOnLinux, and q4wine are bundled by default. Comment out the section where it is installed within Dockerfile if the user wants containers without Wine.
The container requires host NVIDIA GPU driver versions of at least 450.80.02 and preferably 470.42.01 (the latest minor version in each major version), with the NVIDIA Container Toolkit to be also configured on the host for allocating GPUs. All Maxwell or later generation GPUs in the consumer, professional, or datacenter lineups should not have significant issues running this container, although the Selkies-GStreamer high-performance NVENC backend may not be available. Kepler GPUs are untested and likely does not support the NVENC backend, but can be mostly functional using fallback software acceleration.
The high-performance NVENC backend for the Selkies-GStreamer WebRTC interface is only supported in GPUs listed as supporting H.264 (AVCHD) under the NVENC - Encoding section of NVIDIA's Video Encode and Decode GPU Support Matrix. If your GPU is not listed as supporting H.264 (AVCHD), add the environment variable SELKIES_ENCODER to values including x264enc, vp8enc, or vp9enc in your container configuration for falling back to software acceleration, which also has a very good performance depending on your CPU.
The default username is ubuntu for both the web authentication prompt and the container Linux username. The environment variable PASSWD (defaulting to mypasswd) is the password for the container Linux user account, and SELKIES_BASIC_AUTH_PASSWORD is the password for the HTML5 interface authentication prompt. If SELKIES_ENABLE_BASIC_AUTH is set to true for Selkies-GStreamer but SELKIES_BASIC_AUTH_PASSWORD is unspecified, the HTML5 interface password will default to PASSWD.
NOTES: Only one web browser can be connected at a time with the selkies-gstreamer WebRTC interface. If the signaling connection works, but the WebRTC connection fails, read the WebRTC and Firewall Issues section.
There are two web interfaces that may be chosen in this container, the first being the default Selkies-GStreamer WebRTC HTML5 web interface (requires a TURN server or host networking for best performance), and the second being the fallback KasmVNC WebSocket HTML5 web interface. While the KasmVNC interface does not support audio forwarding, it can be useful for troubleshooting the Selkies-GStreamer WebRTC interface or using this container in constrained environments.
The KasmVNC interface can be enabled in place of Selkies-GStreamer by setting KASMVNC_ENABLE to true. When using the KasmVNC interface, environment variables SELKIES_ENABLE_BASIC_AUTH, SELKIES_BASIC_AUTH_USER, SELKIES_BASIC_AUTH_PASSWORD, SELKIES_ENABLE_RESIZE, SELKIES_ENABLE_HTTPS, SELKIES_HTTPS_CERT, and SELKIES_HTTPS_KEY, used with Selkies-GStreamer, are also inherited. As with the Selkies-GStreamer WebRTC interface, the KasmVNC interface username and password will also be set to the environment variables SELKIES_BASIC_AUTH_USER and SELKIES_BASIC_AUTH_PASSWORD, also using ubuntu and the environment variable PASSWD by default if not set.
Run the container with Docker, Podman, or other NVIDIA-supported container runtimes:
docker run --pull=always --name selkies-xgl -it -d --gpus 1 --tmpfs /dev/shm:rw -e TZ=UTC -e DISPLAY_SIZEW=1920 -e DISPLAY_SIZEH=1080 -e DISPLAY_REFRESH=60 -e DISPLAY_DPI=96 -e DISPLAY_CDEPTH=24 -e VIDEO_PORT=DFP -e PASSWD=mypasswd -e SELKIES_ENCODER=nvh264enc -e SELKIES_BASIC_AUTH_PASSWORD=mypasswd -p 8080:8080 ghcr.io/selkies-project/nvidia-glx-desktop:latest
NOTES: The container tags available are
latestand22.04for Ubuntu 22.04, and20.04for Ubuntu 20.04. Persistent container tags are available in the form22.04-20210101010101. Replace all instances ofmypasswdwith your desired password.SELKIES_BASIC_AUTH_PASSWORDwill default toPASSWDif unspecified. The container must not be run in privileged mode.
Change SELKIES_ENCODER to x264enc, vp8enc, or vp9enc when using the selkies-gstreamer interface if your GPU does not support H.264 (AVCHD) under the NVENC - Encoding section in NVIDIA's Video Encode and Decode GPU Support Matrix.
Connect to the web server with a browser on port 8080. You may also separately configure a reverse proxy to this port for external connectivity.
NOTES: Additional configurations and environment variables for the selkies-gstreamer WebRTC HTML5 interface are listed in lines that start with
parser.add_argumentwithin the selkies-gstreamer main script.
(Not Applicable for KasmVNC) Read carefully if the selkies-gstreamer WebRTC HTML5 interface does not connect. Choose whether to use host networking or a TURN server. The selkies-gstreamer WebRTC HTML5 interface will likely just start working if you add --network host to the above docker run command. However, this may be restricted or be undesired because of security reasons. If so, check if the container starts working after omitting --network host. If it does not work, you need a TURN server. Read the WebRTC and Firewall Issues section and add the environment variables -e SELKIES_TURN_HOST=, -e SELKIES_TURN_PORT=, and pick one of -e SELKIES_TURN_SHARED_SECRET= or both -e SELKIES_TURN_USERNAME= and -e SELKIES_TURN_PASSWORD= environment variables to the docker run command based on your authentication method.
Create the Kubernetes Secret with your authentication password:
kubectl create secret generic my-pass --from-literal=my-pass=YOUR_PASSWORD
NOTES: Replace
YOUR_PASSWORDwith your desired password, and change the namemy-passto your preferred name of the Kubernetes secret with thexgl.ymlfile changed accordingly as well. It is possible to skip the first step and directly provide the password withvalue:inxgl.yml, but this exposes the password in plain text.
Create the pod after editing the xgl.yml file to your needs, explanations are available in the file:
kubectl create -f xgl.yml
NOTES: The container tags available are
latestand22.04for Ubuntu 22.04, and20.04for Ubuntu 20.04. Persistent container tags are available in the form22.04-20210101010101.SELKIES_BASIC_AUTH_PASSWORDwill default toPASSWDif unspecified.
Change SELKIES_ENCODER to x264enc, vp8enc, or vp9enc when using the selkies-gstreamer WebRTC interface if your GPU does not support H.264 (AVCHD) under the NVENC - Encoding section in NVIDIA's Video Encode and Decode GPU Support Matrix.
Connect to the web server spawned at port 8080. You may configure the ingress endpoint or reverse proxy that your Kubernetes cluster provides to this port for external connectivity.
NOTES: Additional configurations and environment variables for the selkies-gstreamer WebRTC HTML5 interface are listed in lines that start with
parser.add_argumentwithin the selkies-gstreamer main script.
(Not Applicable for KasmVNC) Read carefully if the selkies-gstreamer WebRTC HTML5 interface does not connect. Choose whether to use host networking or a TURN server. The selkies-gstreamer WebRTC HTML5 interface will likely just start working if you uncomment hostNetwork: true in xgl.yml. However, this may be restricted or be undesired because of security reasons. If so, check if the container starts working after commenting out hostNetwork: true. If it does not work, you need a TURN server. Read the WebRTC and Firewall Issues section and fill in the environment variables SELKIES_TURN_HOST and SELKIES_TURN_PORT, then pick one of SELKIES_TURN_SHARED_SECRET or both SELKIES_TURN_USERNAME and SELKIES_TURN_PASSWORD environment variables based on your authentication method.
Note that this section is only required for the selkies-gstreamer WebRTC HTML5 interface. For an easy fix to when the signaling connection works, but the WebRTC connection fails, add the option --network host to your Docker command, or uncomment hostNetwork: true in your xgl.yml file when using Kubernetes (note that your cluster may have not allowed this, resulting in an error). This exposes your container to the host network, which disables network isolation. If this does not fix the connection issue (normally when the host is behind another firewall) or you cannot use this fix for security or technical reasons, read the below text.
In most cases when either of your server or client has a permissive firewall, the default Google STUN server configuration will work without additional configuration. However, when connecting from networks that cannot be traversed with STUN, a TURN server is required.
Read the instructions from selkies-gstreamer if want to deploy a TURN server or use a public TURN server instance.
With Docker (or Podman), use the -e option to add the SELKIES_TURN_HOST, SELKIES_TURN_PORT environment variables. This is the hostname or IP and the port of the TURN server (3478 in most cases).
You may set SELKIES_TURN_PROTOCOL to tcp if you are only able to open TCP ports for the coTURN container to the internet, or if the UDP protocol is blocked or throttled in your client network. You may also set SELKIES_TURN_TLS to true with the -e option if TURN over TLS/DTLS was properly configured.
You also require to provide either just SELKIES_TURN_SHARED_SECRET for time-limited shared secret TURN authentication, or both SELKIES_TURN_USERNAME and SELKIES_TURN_PASSWORD for legacy long-term TURN authentication, depending on your TURN server configuration. Provide just one of these authentication methods, not both.
Your TURN server will use only one out of two ways to authenticate the client, so only provide one type of authentication method. The time-limited shared secret TURN authentication requires to only provide the Base64 encoded SELKIES_TURN_SHARED_SECRET. The legacy long-term TURN authentication requires to provide both SELKIES_TURN_USERNAME and SELKIES_TURN_PASSWORD credentials.
Create a secret containing the TURN shared secret:
kubectl create secret generic turn-shared-secret --from-literal=turn-shared-secret=MY_SELKIES_TURN_SHARED_SECRET
NOTES: Replace
MY_SELKIES_TURN_SHARED_SECRETwith the shared secret of the TURN server, then changing the nameturn-shared-secretto your preferred name of the Kubernetes secret, with thexgl.ymlfile also being changed accordingly.
Uncomment the lines in the xgl.yml file related to TURN server usage, updating the SELKIES_TURN_HOST and SELKIES_TURN_PORT environment variable as needed:
- name: SELKIES_TURN_HOST
value: "turn.example.com"
- name: SELKIES_TURN_PORT
value: "3478"
- name: SELKIES_TURN_SHARED_SECRET
valueFrom:
secretKeyRef:
name: turn-shared-secret
key: turn-shared-secret
- name: SELKIES_TURN_PROTOCOL
value: "udp"
- name: SELKIES_TURN_TLS
value: "false"
NOTES: It is possible to skip the first step and directly provide the shared secret with
value:, but this exposes the shared secret in plain text. SetSELKIES_TURN_PROTOCOLtotcpif you were able to only open TCP ports while creating your own coTURN Deployment/DaemonSet, or if your client network throttles or blocks the UDP protocol.
Create a secret containing the TURN password:
kubectl create secret generic turn-password --from-literal=turn-password=MY_SELKIES_TURN_PASSWORD
NOTES: Replace
MY_SELKIES_TURN_PASSWORDwith the password of the TURN server, then changing the nameturn-passwordto your preferred name of the Kubernetes secret, with thexgl.ymlfile also being changed accordingly.
Uncomment the lines in the xgl.yml file related to TURN server usage, updating the SELKIES_TURN_HOST, SELKIES_TURN_PORT, and SELKIES_TURN_USERNAME environment variable as needed:
- name: SELKIES_TURN_HOST
value: "turn.example.com"
- name: SELKIES_TURN_PORT
value: "3478"
- name: SELKIES_TURN_USERNAME
value: "username"
- name: SELKIES_TURN_PASSWORD
valueFrom:
secretKeyRef:
name: turn-password
key: turn-password
- name: SELKIES_TURN_PROTOCOL
value: "udp"
- name: SELKIES_TURN_TLS
value: "false"
NOTES: It is possible to skip the first step and directly provide the TURN password with
value:, but this exposes the TURN password in plain text. SetSELKIES_TURN_PROTOCOLtotcpif you were able to only open TCP ports while creating your own coTURN Deployment/DaemonSet, or if your client network throttles or blocks the UDP protocol.
Run Input Method: Configure Input Method from the start menu, uncheck Only Show Current Language, search and add from available input methods (Hangul, Mozc, Pinyin, and others) by moving to the right, then use Ctrl + Space to switch between the input methods. Raise an issue if you need more layouts.
Check that the NVIDIA Container Toolkit is properly configured in the host. Next, check whether your host NVIDIA GPU driver is the nvidia-headless variant, which lacks the required display and graphics capabilities for this container.
After that, check the environment variable NVIDIA_DRIVER_CAPABILITIES after starting a shell interface inside the container. NVIDIA_DRIVER_CAPABILITIES should be set to all, or include a comma-separated list of compute (requirement for CUDA and OpenCL, or for the selkies-gstreamer WebRTC remote desktop interface), utility (requirement for nvidia-smi and NVML), graphics (requirement for OpenGL and part of the requirement for Vulkan), video (required for encoding or decoding videos using NVIDIA GPUs, or for the selkies-gstreamer WebRTC remote desktop interface), display (the other requirement for Vulkan), and optionally compat32 if you use Wine or 32-bit graphics applications.
Moreover, if you are using custom configurations, check if your shared memory path /dev/shm has sufficient capacity, where expanding the capacity is done by adding --tmpfs /dev/shm:rw to your Docker command or adding the below lines to your Kubernetes configuration file.
spec:
template:
spec:
containers:
volumeMounts:
- mountPath: /dev/shm
name: dshm
volumes:
- name: dshm
emptyDir:
medium: Memory
If you checked everything here, scroll down.
systemd, polkit, FUSE mounts, or sandboxed (containerized) application distribution systems like Flatpak, Snapcraft (snap), AppImage, and etc.Use the option --appimage-extract-and-run or --appimage-extract with your AppImage to run them in a container. Alternatively, set export APPIMAGE_EXTRACT_AND_RUN=1 to your current shell. For controlling PulseAudio, use pactl instead of pacmd as the latter corrupts the audio system within the container. Use sudoedit to edit protected files in the desktop instead of using sudo followed by the name of the editor.
Note that because of restrictions from Xorg, it is not possible to share one GPU to multiple Xorg servers running in different containers. Use docker-nvidia-egl-desktop if you intend to do this.
--privileged mode or with --cap-add and do not want other containers to interfere.Make sure that the NVIDIA_DRIVER_CAPABILITIES environment variable is set to all, or includes both graphics and display. The display capability is especially crucial to Vulkan, but the container does start without noticeable issues other than Vulkan without display, despite its name.
If your GPU is a consumer or professional GPU, change the VIDEO_PORT environment variable from DFP to DP-0 if DP-0 is empty, or any empty DP-* port. Set VIDEO_PORT to where your monitor is connected if you want to show the remote desktop in a real monitor. If your GPU is a Datacenter (Tesla) GPU, keep the VIDEO_PORT environment variable to DFP, and your maximum resolution is at 2560 x 1600. To go above this restriction, you may set VIDEO_PORT to none, but you must use borderless window instead of fullscreen, and this may lead to quite a lot of applications not starting, showing errors related to XRANDR or RANDR.
This work was supported in part by National Science Foundation (NSF) awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-1826967, OAC-2112167, CNS-2100237, CNS-2120019, the University of California Office of the President, and the University of California San Diego's California Institute for Telecommunications and Information Technology/Qualcomm Institute. Thanks to CENIC for the 100Gbps networks.